Convergent synthesis of the spiroketal core of the HIV-1 protease inhibitors the didemnaketals

Yanxing Jia, Xin Li, Pingzhen Wang, Bin Wu, Xuezhi Zhao and Yongqiang Tu*
Department of Chemistry \& National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

Received (in Cambridge) 19th September 2001, Accepted 12th December 2001
First published as an Advance Article on the web 29th January 2002

A stereocontrolled and efficient synthetic approach to the spiroketal compound $\mathbf{4 a}$ and its $\mathrm{Cl}^{\prime \prime}$-epimer $\mathbf{4 b}$, the core of the HIV-protease inhibitor didemnaketals isolated from the ascidian Didemnum sp., is developed through a multistep approach from natural L-(-)-menthone. This route involves the highly diastereoselective construction of four chiral carbon centers by intramolecular chiral induction.

Introduction

The didemnaketals, new complex, naturally occuring marine spiroketal compounds isolated from the ascidian Didemnum sp. by Faulkner and colleagues, have been found to inhibit HIV-1 protease, with IC_{50}-values of $\mathbf{1}$ and $\mathbf{2}$ being $2 \mu \mathrm{M}$ and $10 \mu \mathrm{M}$, respectively. ${ }^{1}$ In addition, their structural features, which include the presence of two branching methyl groups at two β positions of the spiro center and a long side-chain bearing multi-acetoxy groups, are significant. However, their synthesis has not been reported previously, and it is important to perform studies toward their total synthesis. Our research interest in the chemistry of this class of compound is focused on the development of an efficient synthetic approach, in which the construction of the key spiroketals $\mathbf{4 a} / \mathbf{4} \mathbf{b}$ is the challenging work. Since the original report did not determine the absolute stereochemistry of the naturally occurring didemnaketals, we selected a pair of epimers $\mathbf{4 a} / \mathbf{4 b}$ as the target molecules with such configurations as shown in Scheme 1. In this paper we present a convergent stereocontrolled approach to the spiroketals $\mathbf{4 a} / \mathbf{4 b}$.

Results and discussion

In developing a synthetic strategy to access $\mathbf{4 a} / \mathbf{4 b}$ (Scheme 1), the synthesis of the key open-chain δ, δ^{\prime}-dihydroxy ketone intermediate 5 was envisaged, ${ }^{2}$ which would be further disconnected into two similar pieces 6 and 7, in terms of its structural symmetry. Both 6 and 7 contain the similar key ' 1 -oxygen- 3 -methyl' moiety, which reminded us that the abundant and natural L -
(-)-menthone $\mathbf{8}$ could be employed as a starting material due to the presence of a chiral methyl in 8 . So our synthesis work started from the construction of two intermediates 6 and 7.

The construction of intermediate $\mathbf{6}$ from $\mathbf{8}$ is shown in Scheme 2. Thus, the known α, β-unsaturated ketone 9 was prepared from L-(-)-menthone using a literature procedure, ${ }^{3}$ and then was subjected to stereoselective epoxidation with basic $\mathrm{H}_{2} \mathrm{O}_{2}$ to afford exclusively the epoxy ketone $\mathbf{1 0}$ in 71% yield. ${ }^{4}$ After several attempts to ring open 10 with hydrazine, the key allylic alcohol intermediate $\mathbf{1 1}$ was prepared in reasonable yield $(65 \%) .{ }^{5}$ Direct ozonization of 11 without protecting the hydroxy group by carefully monitoring the reaction formed the keto-aldehyde product, which was obtained actually as an intramolecular hemiacetal $\mathbf{1 2}$ (2 isomers, $c a .1 / 1$) in 85% yield. Subsequent reduction of the ketone carbonyl of 12 with NaBH_{4} at low temperature gave the sole product $\mathbf{1 3}$ in 80% yield. Fortunately, the stereochemistry of the newly formed hydroxy group of $\mathbf{1 3}$ was determined to have the α-hydroxy configuration on the basis of the NOESY spectra for the acetonide of $\mathbf{1 4}$. Thus, all of the chiral carbon centers required for the intermediate $\mathbf{6}$ were constructed. Trans-acetalization of the hemiacetal 13 with propane-1,3-dithiol, followed by protection of the two hydroxy groups with TBSCl (tert-butyldimethylsilyl chloride), and final deprotection of the aldehyde carbonyl, afforded the intermediate $\mathbf{6}$ (52% yield, three steps).

Preparation of the intermediate 7 is presented in Scheme 3, in which the initial reduction of the α, β-unsaturated ketone 9 with NaBH_{4} furnished exclusively the allylic alcohol 16 in 90% yield. The stereochemistry of the newly formed hydroxy group of $\mathbf{1 6}$

Scheme 1

Scheme 2 Reagents and conditions (yields): (a) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}(71 \%)$; (b) $85 \% \mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{HOAc}, 25{ }^{\circ} \mathrm{C}(65 \%)$; (c) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}$; then $\mathrm{Me}_{2} \mathrm{~S}(85 \%)$; (d) $\mathrm{NaBH}_{4}, \mathrm{MeOH},-78^{\circ} \mathrm{C}(80 \%)$; (e) propane-1,3-dithiol, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 0^{\circ} \mathrm{C}(78 \%)$; (f) TBDMSCl, imidazole, DMF, $90^{\circ} \mathrm{C}$; (g) $\mathrm{CaCO}_{3}, \mathrm{HgCl}_{2}, 80 \% \mathrm{MeCN}$-water (66%) (2 steps).

Scheme 3 Reagents and conditions (yields): (a) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}(90 \%)$; (b) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; then $\mathrm{Me}_{2} \mathrm{~S}$ (85%); (c) I_{2}, IBDA, $h \nu, 25^{\circ} \mathrm{C}(70 \%)$; (d) $\mathrm{PhSO}_{2} \mathrm{Na}$, DMF (90%); (e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}(88 \%)$; (f) $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}(93 \%)$; (g) $\mathrm{NaBH}_{4}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}(90 \%)$; (h) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$; (i) acetone, PTSA (84%) (2 steps). IBDA = (Diacetoxyiodo)benzene.
was established to have the β-configuration from the literature. ${ }^{6}$ Direct ozonization of $\mathbf{1 6}$ in the same way as $\mathbf{1 1}$ afforded the hemiacetal 17 (2 isomers, ca. 1/1) in 85% yield, which was subjected to decarboxylation-iodination with (diacetoxyiodo)benzene (IBDA) to afford the iodide $\mathbf{1 8}(70 \%)$ bearing the C4formyloxy group. ${ }^{7}$ Sulphonation of $\mathbf{1 8}$ with $\mathrm{PhSO}_{2} \mathrm{Na}$ gave the sulfone 19 in 90% yield. ${ }^{8}$ Deformylation of 19 with $\mathrm{K}_{2} \mathrm{CO}_{3}-$ MeOH followed by a regular reduction with NaBH_{4} gave the diol 21 as a mixture of two isomers ($c a .1 / 1$), which could not be separated by column chromatography. The $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ reduction of the ketone carbonyl of $\mathbf{2 0}$ following a literature procedure could furnish predominantly the product 21a with the α hydroxy configuration in 93% yield, ${ }^{8}$ but its epimer 21b with the β-hydroxy configuration has not been obtained due to that no direct procedure is available. Therefore, direct reduction of 19 afforded 22a and 22b in 90% yield, which could be separated by column chromatography. Deformylation of 22a and 22b separately with $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}$ then furnished 21a and 21b in the same 88% yield, respectively. The stereochemistry of 21a was further determined by the NOESY spectra of 7a. Thus, the diastereoselective construction of two chiral carbon centers bearing hydroxy groups was achieved. Protection of the two hydroxy groups of 21a and 21b as an acetonide furnished the intermediates $7 \mathbf{a}$ and $7 \mathbf{7 b}$ in the same 95% yield, respectively.

The coupling of 6 and 7 a was performed as shown in Scheme 4. Deprotonation of the sulfone 7 a with $n-\mathrm{BuLi}$, followed by the addition of aldehyde $\mathbf{6}$, led to the β-hydroxy sulfone 23a in 73\% yield. ${ }^{9}$ Oxidation of the hydroxy group of 23a with PDC, followed by desulfonation with 6% sodium amalgam, gave the precursor $\mathbf{2 4 a}(66 \%)$ for the spirocyclization, ${ }^{10}$ which corre-
sponded to the open-chain intermediate 5 . Thus, treatment of 24a with a solution of 40% aq. hydrofluoric acid and acetonitrile led to full deprotection-spirocyclization to form the target spiroketal 4a in 67% yield. ${ }^{11}$ In the same way above, the epimer 4b also has been synthesized from the diastereoisomerically pure $\mathbf{7 b}$ (30% yield, three steps via intermediates 23b and 24b).

In conclusion, an efficient synthetic approach to the spiroketal core of the HIV-1 protease inhibitor didemnaketals is described. Further studies concerning the total synthesis and biological activity are ongoing.

Experimental

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded for CDCl_{3} solutions on a Bruker 200 MHz or a Bruker 400 MHz instrument with TMS as internal standard. J-Values are in Hz. MS data were measured with EI $(70 \mathrm{eV})$ and HRMS data were measured with FAB or ESI techniques. Optical rotations were determined on Perkin-Elmer Model 341, and $[a]_{D}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Compounds were purified by column chromatography on silica gel H , from the Qingdao Marine Chemical Factory, and elution with solvent mixtures of light petroleum (distillation range $60-90^{\circ} \mathrm{C}$) and ethyl acetate. Ether refers to diethyl ether.

(1R,4R,6R)-1-Isopropyl-4-methyl-7-oxa-bicyclo[4.1.0]heptan-2one 10

To a stirred solution of $\mathbf{9}(1.86 \mathrm{~g}, 12.2 \mathrm{mmol})$ and 30% hydrogen peroxide (4.6 mL) in methanol (30 mL) was added 6 M NaOH
$(1.0 \mathrm{~mL})$ at room temperature. The mixture was stirred for 7 h after which the solvent was removed in vacuo. The residue was extracted with ether ($3 \times 30 \mathrm{~mL}$) and the extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give $10(1.46 \mathrm{~g}, 71 \%),[a]_{\mathrm{D}}^{25}+61(c 1.0$ in MeOH$)$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 3.46\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.75-1.65(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$ and CHMe$)_{2}$), $1.10\left(6 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe} e_{2}\right), 0.90$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 205.5(\mathrm{C}), 63.6(\mathrm{C}), 57.2$ $(\mathrm{CH}), 46.0,31.7,25.6,23.7,21.0,18.4,16.0\left(2 \times \mathrm{CH}, 2 \times \mathrm{CH}_{2}\right.$ and $3 \times \mathrm{CH}_{3}$).

(1R,5S)-2-Isopropyl-5-methylcyclohex-2-enol 11

To a stirred solution of $\mathbf{1 0}(2.68 \mathrm{~g}, 16.0 \mathrm{mmol})$ and 85% hydrazine hydrate (18.0 mL) in methanol (40 mL) was added a portion of acetic acid at $0^{\circ} \mathrm{C}$. After stirring of the mixture for 8 h at room temperature, the solvent was removed in vacuo. The residue was extracted with ether ($3 \times 40 \mathrm{~mL}$), and the extracts were washed successively with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give $11(1.58 \mathrm{~g}$, $65 \%),[a]_{\mathrm{D}}^{25}+68(c 0.57 \mathrm{in} \mathrm{EtOH}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 5.53(1 \mathrm{H}, \mathrm{m}$, $\left.\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 4.11(1 \mathrm{H}, \mathrm{br} \text { s, } \mathrm{CCHOHCH})_{2}\right), 2.42(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCMe} 2), 2.15-1.24\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.\mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right), 0.94(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.5, \mathrm{CHCH}_{3}\right)$.
(4R,6R)-2-Hydroxy-4-methyl-6-(2'-methylpropionyl)tetrahydropyran 12
Into a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of compound $11(1.0 \mathrm{~g}, 5.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was bubbled ozone. When the reaction was complete (TLC) the reaction mixture was treated with $\mathrm{Me}_{2} \mathrm{~S}$ (2 mL), stirred overnight, and evaporated in vacuo. The residue was purified by column chromatography to give $12(1.0 \mathrm{~g}, 85 \%)$ as a mixture of two isomers in the ratio $1: 1 . \delta_{\mathrm{H}}(400 \mathrm{MHz})$ (2 isomers) $5.47(1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{OCHOH}), 4.79(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $1.9, \mathrm{OCHOH}), 4.60\left(1 \mathrm{H}, \mathrm{dd}, J 12.2\right.$ and $\left.2.4, \mathrm{CH}_{2} \mathrm{CHOCH}\right)$, $4.04\left(1 \mathrm{H}, \mathrm{dd}, J 11.8\right.$ and $\left.2.4, \mathrm{CH}_{2} \mathrm{CHOCH}\right), 3.12(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H \mathrm{CMe}_{2}\right), 2.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{CMe}_{2}\right), 2.25-0.90(10 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 1.08(12 \mathrm{H}, \mathrm{d}, J 6.8,2 \times \mathrm{CHCMe} 2), 1.01(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.0, \mathrm{CHCH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 213.8$ (C), $213.0(\mathrm{C}), 96.4(\mathrm{CH}), 92.3(\mathrm{CH}), 79.6(\mathrm{CH}), 73.3(\mathrm{CH})$, $41.0\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 37.4(\mathrm{CH}), 36.0(\mathrm{CH}), 35.8\left(\mathrm{CH}_{2}\right)$, $35.4\left(\mathrm{CH}_{2}\right), 30.0(\mathrm{CH}), 29.3(\mathrm{CH}), 23.8\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$, $21.6\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 185$ $\left(\mathrm{M}^{+}-1,4 \%\right), 169$ (30), 115 (64), 71 (100); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 209.1144. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ requires $M+N a$, 209.1148.

(4R,6R)-6-[(1R)-1-Hydroxy-2-methylpropyl)]-4-methyltetra-hydropyran-2-ol 13

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$, stirred solution of $\mathbf{1 2}(1.1 \mathrm{~g}, 5.90 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(210 \mathrm{mg}, 5.90 \mathrm{mmol})$. The
mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.0 h , then the solvent was removed in vacuo. The obtained residue was diluted with ether $(80 \mathrm{~mL})$ and the extracts were washed successively with water $(20 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give $\mathbf{1 3}$ $(0.89 \mathrm{~g}, 80 \%)$ as a mixture of two isomers in the ratio $1: 1$ as a colorless oil. $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ (2 isomers) $5.37(1 \mathrm{H}, \mathrm{d}, J 2.5$, $\mathrm{OCHOH}), 4.77(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $1.3, \mathrm{OCHOH}), 4.07(1 \mathrm{H}, \mathrm{dt}$, $J 9.7$ and $\left.2.5, \mathrm{CH}_{2} \mathrm{CHOCH}\right), 3.54(1 \mathrm{H}$, ddd, $J 11.5,3.5$ and 2.5 , $\left.\mathrm{CH}_{2} \mathrm{CHOCH}\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $3.5, \mathrm{CHCHOHCH})$, $3.27(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $3.5, \mathrm{CHCHOHCH}), 1.90-1.07(12 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CHCH}_{2}$ and $\left.2 \times \mathrm{CHCMe}_{2}\right), 1.01(6 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.\mathrm{CHCMe}_{2}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CHCH}_{3}\right), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}^{\mathrm{A}} \mathrm{Me}^{B}\right), 0.86(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.6, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 96.2(\mathrm{CH}), 92.2(\mathrm{CH}), 78.4(\mathrm{CH})$, $78.1(\mathrm{CH}), 76.3(\mathrm{CH}), 69.7(\mathrm{CH}), 41.4,38.4,32.0,31.4,29.8$, $29.3,29.2,28.7,23.1,22.3,21.8,19.0,18.8,18.7(4 \times \mathrm{CH}, 4 \times$ CH_{2} and $\left.6 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(2\right.$ isomers) (EI) $171\left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}\right.$, 8%), $170\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 13\right), 115$ (92), 71 (100); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 211.1144. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{3}$ requires $M+H$, 209.1148.

2-[(2R,4R,5R)-4,5-Dihydroxy-2,6-dimethylheptyl]-1,3-dithiane 14

To a solution of $\mathbf{1 3}$ ($800 \mathrm{mg}, 4.26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added propane-1,3-dithiol ($1.6 \mathrm{~mL}, 16.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.20 \mathrm{~mL})$. Stirring was continued for 1.5 h at $0{ }^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aq. NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 20 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by column chromatography to give $14(0.88 \mathrm{~g}, 78 \%),[a]_{\mathrm{D}}^{25}+23$ (c 1.0 in CHCl_{3}); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHS}_{2}\right), 3.98$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOHCH}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $3.8, \mathrm{CH}-$ $\mathrm{CHOHCH}), 2.91-2.79\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.11-1.17$ $\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$ and CHCMe 2$), 1.04(3 \mathrm{H}$, d, J 6.6, $\mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}$), $0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right)$, $0.87\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 83.9(\mathrm{CH}), 75.0(\mathrm{CH})$, $45.1(\mathrm{CH}), 43.9\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 28.8$ $(\mathrm{CH}), 27.3\left(\mathrm{CH}_{2}\right), 25.9(\mathrm{CH}), 20.4\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right), 18.7$ $\left(\mathrm{CH}_{3}\right) ; ~ m / z(\mathrm{EI}) 278\left(\mathrm{M}^{+}, 6 \%\right), 246(56), 131$ (59), 105 (100); HRMS (FAB) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 279.1200. $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M+H, 279.1212$.

2-[(2R,4R,5R)-4,5-Isopropylidenedioxy-2,6-dimethylheptyl]-1,3-dithiane, the acetonide of 14

To a solution of $\mathbf{1 4}(55 \mathrm{mg}, 0.21 \mathrm{mmol})$ in dry acetone (2 mL) was added a catalytic amount of PTSA. The mixture was stirred for 8 h at room temperature, and was then diluted with ether (30 mL) and washed successively with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give the acetonide of $\mathbf{1 4}(50 \mathrm{mg}, 79 \%),[a]_{\mathrm{D}}^{25}+69$ (c 1.0 in

Scheme 4 Reagents and conditions (yields): (a) n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; then $\mathbf{6},-78^{\circ} \mathrm{C}, 2.5 \mathrm{~h}(73 \%)$; (b) i) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) $\mathrm{Na}(\mathrm{Hg}), \mathrm{MeOH}$, $0{ }^{\circ} \mathrm{C}(66 \%)$; (c) $40 \% \mathrm{HF}, \mathrm{MeCN}, 25^{\circ} \mathrm{C}(67 \%)$.
$\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.05(1 \mathrm{H}$, ddd, $J 11.6,5.0$ and 2.4 , $\left.\mathrm{CH}_{2} \mathrm{CHOHCH}\right), 4.03\left(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CHS}_{2}\right), 3.59(1 \mathrm{H}, \mathrm{dd}$, $J 9.8$ and 5.0, CHCHOHCH$), 2.91-2.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 2.10-0.85\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right.$ and $\mathrm{SCH}_{2}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}^{\mathrm{A}} M e^{B}\right)$, 0.97 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}$), $0.89\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}^{\mathrm{A}}\right.$ $\left.M e^{B}\right), 0.78\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 107.5(\mathrm{C})$, $83.9(\mathrm{CH}), 74.9(\mathrm{CH}), 45.2(\mathrm{CH}), 43.9\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 30.4$ $\left(2 \times \mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 27.2(\mathrm{CH}), 26.2\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.9$ $(\mathrm{CH}), 20.4\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$; HRMS (FAB) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 319.1598. $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $M+H$, 319.1602 .

2-[(2R,4R,5R)-4,5-Bis(tert-butyldimethylsilyloxy)-2,6-dimethyl-heptyl]-1,3-dithiane 15

To a solution of diols $14(840 \mathrm{mg}, 3.02 \mathrm{mmol})$ in DMF (5 mL) were added imidazole ($1.03 \mathrm{~g}, 15.2 \mathrm{mmol}$) and TBDMSCl $(1.09 \mathrm{~g}, 7.2 \mathrm{mmol})$. The reaction mixture was stirred for 24 h at $90^{\circ} \mathrm{C}$, then diluted with ether (80 mL), washed successively with water $(3 \times 20 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give $\mathbf{1 5}(1.26 \mathrm{~g}, 82 \%),[a]_{\mathrm{D}}^{25}+12.0(c 1.26$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.08\left(1 \mathrm{H}, \mathrm{dd}, J 6.8\right.$ and $\left.8.1, \mathrm{CH}_{2} \mathrm{CHS}_{2}\right)$, $3.76(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{CHOH}), 3.34(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{CHOH})$, 2.91-2.78 (4H, m, SCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 2.10-1.10 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Ce}_{2}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$ and $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 0.91-0.86(27 \mathrm{H}, \mathrm{m}, 2 \times$ $\mathrm{CMe}_{3}, \mathrm{CHCH}_{3}$ and $\left.\mathrm{CHMe} e_{2}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}), $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$) $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ $83.0(\mathrm{CH}), 72.7(\mathrm{CH}), 45.6(\mathrm{CH}), 43.7\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 31.8$ $\left(\mathrm{CH}_{2}\right), 30.6(\mathrm{CH}), 30.5\left(\mathrm{CH}_{2}\right), 26.2\left(6 \times \mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 25.8(\mathrm{CH})$, $20.3\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 18.1(\mathrm{C}),-3.4$ $\left(\mathrm{CH}_{3}\right),-3.5\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 449$ $\left(\mathrm{M}^{+}-57,3 \%\right), 319$ (20), 185 (50), 147 (59), 84 (100).

(3R,5R,6R)-5,6-Bis(tert-butyldimethylsilyloxy)-3,7-dimethyloctanal 6

A solution of the dithiane $\mathbf{1 5}(900 \mathrm{mg}, 1.78 \mathrm{mmol})$ in 80% acetonitrile (25 mL) was added to an efficiently stirred solution of mercuric chloride ($2.01 \mathrm{~g}, 7.48 \mathrm{mmol}$) and powdered calcium carbonate ($748 \mathrm{mg}, 7.48 \mathrm{mmol}$) in 80% acetonitrile (30 mL). The mixture was stirred and heated at reflux under nitrogen for 24 h , cooled, and filtered through Super Cel., and the filter cake was washed thoroughly with ether. The organic phase of the filtrate was washed successively with 5 M aq. $\mathrm{NH}_{4} \mathrm{OAc}$, water, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give $6(600 \mathrm{mg}, 81 \%)$, $[a]_{\mathrm{D}}^{25}+22.0\left(c 2.7 \mathrm{in} \mathrm{CHCl}_{3}\right)$) $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ $9.72\left(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CH}_{2} \mathrm{CHO}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 1.3 , CHOTBDMS), 3.35 (1 H , dd, $J 6.6$ and 1.1, CHOTBDMS), 2.31-1.23 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), 0.96-0.86 ($27 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CMe}_{3}, \mathrm{CHCH}_{3}$ and CHMe $), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{c}}(100 \mathrm{MHz})$ $202.6(\mathrm{CH}), 82.8(\mathrm{CH}), 72.8(\mathrm{CH}), 52.1\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{CH}), 31.9$ $\left(\mathrm{CH}_{2}\right), 28.9\left(6 \times \mathrm{CH}_{3}\right), 24.4(\mathrm{CH}), 20.2\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 18.2(\mathrm{C}),-3.4\left(\mathrm{CH}_{3}\right),-3.4\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right)$, $-4.9\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 401\left(\mathrm{M}^{+}-\mathrm{Me}, 1 \%\right), 359\left(\mathrm{M}^{+}-57,2\right)$, 303 (2), 259 (2), 187 (44), 84 (100); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}, 417.3213 . \mathrm{C}_{22} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $M+H, 417.3215$.

($1 R, 5 R$)-Menth-4-en-3-ol 16

To an ice-water-bath-cooled mixture of (-)-menth-4-en-3-one $9(10 \mathrm{~g}, 66 \mathrm{mmol})$ and cerous choride ($24.5 \mathrm{~g}, 66 \mathrm{mmol}$) in $\mathrm{MeOH}(150 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(2.5 \mathrm{~g}, 66 \mathrm{~mol})$ and the mixture was stirred for 30 min , then the solvent was removed in vacuo, the obtained residue was diluted with ether and 5% aq. HCl , and the aqueous layer was extracted with ether. The combined organic layer was washed successively with saturated aq. NaHCO_{3} and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent
was removed in vacuo to give $\mathbf{1 6}(9.1 \mathrm{~g}, 90 \%)$, which was directly used in the next reaction. $[a]_{\mathrm{D}}^{25}-43.9$ ($c 2.5$ in CHCl_{3}); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 5.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 4.29\left(1 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{CH}-\right.$ $\left.\mathrm{OHC}), 2.59-0.89\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \text { and } \mathrm{CHMe}\right)_{2}\right), 1.01(3 \mathrm{H}$, d, J 6.8, СНMe $\left.{ }^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.0\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right), 0.91$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 145.9(\mathrm{C}), 120.3(\mathrm{CH})$, $68.6(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 28.2(2 \times \mathrm{CH}), 22.6\left(\mathrm{CH}_{3}\right)$, $21.8\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 154\left(\mathrm{M}^{+}, 4 \%\right), 139(22), 111$ (100), 43 (38).

(4S,6R)-2-Hydroxy-4-methyl-6-(2'-meth ylpropionyl)tetrahydropyran 17

Into a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of compound $\mathbf{1 6}(1.0 \mathrm{~g}, 5.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was bubbled ozone. When the reaction was complete (TLC) the reaction mixture was treated with $\mathrm{Me}_{2} \mathrm{~S}$ $(2 \mathrm{~mL})$, stirred overnight, and evaporated in vacuo. The residue was purified by column chromatography to give $17(1.0 \mathrm{~g}, 85 \%)$ as a mixture of two isomers. $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ (2 isomers) 5.15 $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCHOH}), 4.66\left(1 \mathrm{H}, \mathrm{t}, J 5.2, \mathrm{CH}_{2} \mathrm{CHOCH}\right), 4.41$ $\left(1 \mathrm{H}, \mathrm{dd}, J 7.0\right.$ and $\left.\left.4.9, \mathrm{CH}_{2} \mathrm{CHOCH}\right), 3.14(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})_{2}\right)$, $3.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.53-0.90\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$, 1.10-1.02 $\left(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH}_{3}\right.$ and $\left.2 \times \mathrm{CHMe}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ 215.4 (C), 215.3 (C), $93.0(\mathrm{CH}), 92.4(\mathrm{CH}), 75.4$ (CH), 74.8 $(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 35.9(\mathrm{CH}), 35.6(\mathrm{CH}), 32.5(2 \times$ $\left.\mathrm{CH}_{2}\right), 25.1(\mathrm{CH}), 22.5(\mathrm{CH}), 21.4\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 18.8$ $\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 186\left(\mathrm{M}^{+}\right.$, 1\%), 168 (1), 143 (1), 115 (28), 71 (100), 43 (38); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 209.1144. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ requires $M+N a$, 209.1148.

(1R)-1-[(2S)-3-Iodo-2-methylpropyl]-3-methyl-2-oxobutyl formate 18

To a mixture of lactol $\mathbf{1 7}(2.0 \mathrm{~g}, 9.6 \mathrm{mmol})$ in cyclohexane $(50 \mathrm{~mL})$ were added iodosylbenzene diacetate (IBDA) $(5.56 \mathrm{~g}$, 17.3 mmol) and iodine ($2.92 \mathrm{~g}, 11.5 \mathrm{mmol}$). The reaction mixture was stirred under argon and irradiation with two 100 W tungsten-filament bulbs for 1.0 h , and then diluted with ether (100 mL), washed successively with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give $18(2.1 \mathrm{~g}, 70 \%),[a]_{\mathrm{D}}^{25}-3.8\left(c 1.75\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.11(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and 3.1, $\mathrm{CH}_{2} \mathrm{CHOC}$), $3.29\left(2 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{CHCH}_{2} \mathrm{I}\right), 2.9(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}_{2}$), $1.83-1.50\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ICH}_{2} \mathrm{CHCH}_{2} \mathrm{CHO}\right), 1.21(3 \mathrm{H}, \mathrm{d}$, $\left.J 7.1, \mathrm{CHCH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.02(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.6, \mathrm{CHMe}^{\mathrm{A}} \mathrm{Me}^{B}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 209.3(\mathrm{C}), 160.0(\mathrm{CH}), 74.4$ $(\mathrm{CH}), 37.1(\mathrm{CH}), 36.4\left(\mathrm{CH}_{2}\right), 30.0(\mathrm{CH}), 21.4\left(\mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}) 312\left(\mathrm{M}^{+}, 1 \%\right), 241(6)$, 169 (17), 139 (25), 71 (100).

(2S,4R)-4-Formyloxy-2,6-dimethyl-5-oxoheptyl phenyl sulfone

 19To a solution of the above iodide $\mathbf{1 8}(1.60 \mathrm{~g}, 5.13 \mathrm{mmol})$ in DMF (6 mL) was added sodium benzenesulfinate (1.54 g , 9.23 mmol) and the solution was stirred for 12 h at $60^{\circ} \mathrm{C}$. The reaction mixture was poured into water (20 mL) and extracted with ether $(3 \times 30 \mathrm{~mL})$. The ethereal layer was washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give 19 (1.51 $\mathrm{g}, 90 \%),[a]_{\mathrm{D}}^{25}-9.0\left(c 0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.01(1 \mathrm{H}, \mathrm{s}$, OCHO), $7.91-7.60(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.31(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 3.1 , $\mathrm{CH}_{2} \mathrm{CHOCHO}$), $3.20\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $4.6, \mathrm{CHCH}^{4} \mathrm{CH}^{\mathrm{B}} \mathrm{S}$), $3.01\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.7.3, \mathrm{CHCH}^{\mathrm{A}} \mathrm{CH}^{B} \mathrm{~S}\right), 2.83(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}_{2}$), 2.31-1.70 (3H, m, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHO}\right), 1.21(3 \mathrm{H}, \mathrm{d}$, $\left.J 7.0, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.17\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right), 1.07(3 \mathrm{H}$, d, $\left.J 6.6, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 209.4(\mathrm{C}), 159.8(\mathrm{CH}), 139.9$ (C), $133.8(\mathrm{CH}), 129.4(2 \times \mathrm{CH}), 127.7(2 \times \mathrm{CH}), 74.7(\mathrm{CH})$, $61.2\left(\mathrm{CH}_{2}\right), 36.9,36.5,26.2,20.8,19.0,17.8\left(2 \times \mathrm{CH}, \mathrm{CH}_{2}\right.$ and $\left.3 \times \mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 298\left(\mathrm{M}^{+}+1-\mathrm{CHO}, 8 \%\right), 255(8), 227$
(100), 143 (18), 71 (48); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 349.1080. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{SNa}$ requires $M+\mathrm{Na}, 349.1080$.

(2S,4R)-4-Hydroxy-2,6-dimethyl-5-oxoheptyl phenyl sulfone 20

Compound 19 ($326 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in MeOH $(4 \mathrm{~mL})$, then the solution was added to a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($220 \mathrm{mg}, 1.60 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{~mL})$ and stirred for 2 h at room temperature. The reaction mixture was diluted with EtOAc (80 mL) and washed with brine ($3 \times 20 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to afford 21a (262 mg , $88 \%), \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.93(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{t}, J 7.8$, $\mathrm{ArH}), 7.58(2 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 4.37(1 \mathrm{H}, \mathrm{dd}, J 9.97$ and 2.5 , $\left.\mathrm{CH}_{2} \mathrm{CHOHC}\right), 3.35\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.5.0, \mathrm{CHCH}^{4} \mathrm{CH}^{\mathrm{B}}\right)$, $3.10\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.1, \mathrm{CHCH}^{A} \mathrm{CH}^{B} \mathrm{~S}\right), 2.84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHMe})_{2}$), 2.46-1.43 (3H, m, CH2 $\left.\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 1.21(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.7, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHCH}_{3}\right), 1.10(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.7, \mathrm{CHMe}^{\mathrm{A}} \mathrm{Me}^{B}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 215.8$ (C), 140.1 (C), 133.6 $(\mathrm{CH}), 129.3(2 \times \mathrm{CH}), 127.8(2 \times \mathrm{CH}), 73.3(\mathrm{CH}), 61.4\left(\mathrm{CH}_{2}\right)$, $39.3,35.9,26.7,20.6,19.4,17.6\left(2 \times \mathrm{CH}, \mathrm{CH}_{2}\right.$ and $\left.3 \times \mathrm{CH}_{3}\right)$; m / z (EI) $298\left(\mathrm{M}^{+}, 1 \%\right), 227$ (100), 143 (22).
(2S,4R,5S)-4-Formyloxy-5-hydroxy-2,6-dimethylheptyl phenyl sulfone 22a and ($2 S, 4 R, 5 R$)-4-formyloxy-5-hydroxy-2,6dimethylheptyl phenyl sulfone 22b

To a cooled ($-78^{\circ} \mathrm{C}$), stirred solution of $\mathbf{1 9}(1.51 \mathrm{~g}, 4.62 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(176 \mathrm{mg}, 4.62 \mathrm{mmol})$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then diluted with EtOAc $(30 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by column chromatography to give 22a and 22b (680 mg and 680 mg , 90%), which were directly used in the next step.

(2S,4R,5S)-4,5-Dihydroxy-2,6-dimethylheptyl phenyl sulfone 21a

Method A. To a solution of $\mathbf{2 0}$ ($300 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry THF (5 mL) was added $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ in THF at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1.0 h , and then diluted with ether (50 mL) and washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to afford 21a ($280 \mathrm{mg}, 93 \%$), $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.88(2 \mathrm{H}$, d, J7.7, ArH), $7.63(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.54(2 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH})$, $3.70(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and $8.1, \mathrm{CHOH}), 3.26(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and $\left.\mathrm{CHCH}^{A} \mathrm{CH}^{\mathrm{B}} \mathrm{S}\right), 2.96\left(1 \mathrm{H}\right.$, dd, $J 14.3$ and $\left.6.9, \mathrm{CHCH}^{\mathrm{A}} \mathrm{CH}^{B} \mathrm{~S}\right)$, $2.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.44-1.47\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH} \mathrm{CHOH}_{2}\right)$, $1.06\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}{ }^{4} \mathrm{Me}^{\mathrm{B}}\right)$, $0.83\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right)$.

Method B. Compound 22a ($680 \mathrm{mg}, 2.07 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ then the solution was added to a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(450 \mathrm{mg}, 3.25 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ and stirred for 2 h at room temperature. The reaction mixture was diluted with EtOAc (100 mL) and washed with brine ($3 \times$ 20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to afford 21a ($546 \mathrm{mg}, 88 \%)$, $[a]_{\mathrm{D}}^{25}+14.2\left(c 0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ $7.90(2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}), 7.65(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.56(2 \mathrm{H}, \mathrm{t}$, $J 7.8, \mathrm{ArH}), 3.72(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and $8.1, \mathrm{CHOH}), 3.28(2 \mathrm{H}, \mathrm{m}$, CHOH and $\left.\mathrm{CHCH} H^{4} \mathrm{CH}^{\mathrm{B}} \mathrm{S}\right), 2.98(1 \mathrm{H}$, dd, $J 14.3$ and 6.9 , $\mathrm{CHCH}^{\mathrm{A}} \mathrm{CH}^{B} \mathrm{~S}$), $2.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.44-1.49(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHOH}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right), 0.96(3 \mathrm{H}$, d, J 6.7, $\left.\mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 139.7(\mathrm{C}), 133.7(\mathrm{CH}), 129.3(2 \times \mathrm{CH}), 127.8(2$ $\times \mathrm{CH}), 79.9(\mathrm{CH}), 69.3(\mathrm{CH}), 61.6\left(\mathrm{CH}_{2}\right), 36.8,29.7,25.4$, 21.4, 19.0, $18.4\left(2 \times \mathrm{CH}, \mathrm{CH}_{2}\right.$ and $\left.3 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 283$ $\left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}, 1 \%\right), 267$ (2), 239 (5), 227 (91), 143 (100), 85 (91), 77 (72); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 301.1467. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H, 301.1468$.
(2S,4R,5R)-4,5-Dihydroxy-2,6-dimethylheptyl phenyl sulfone 21b
Following the same procedure as for 21a, compound 22b ($640 \mathrm{mg}, 1.95 \mathrm{mmol}$) afforded 21b ($520 \mathrm{mg}, 88 \%$), $[\alpha]_{\mathrm{D}}^{25}+6.1$ (c 0.93 in CHCl_{3}); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.90(2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}), 7.64$ $(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{ArH}), 7.55(2 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH}), 3.66(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHOHCH}\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.5.4, \mathrm{CHCH}^{A} \mathrm{CH}^{\mathrm{B}} \mathrm{S}\right)$, $3.06(1 \mathrm{H}, \mathrm{t}, J 5.3, \mathrm{CHCHOHCH}), 3.00(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and 6.6, $\mathrm{CHCH}^{\mathrm{A}} \mathrm{CH}^{B} \mathrm{~S}$), $2.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H-$ $\left.\mathrm{CH}_{3}\right), 1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH} \mathrm{H}_{2} \mathrm{CHOH}\right), 1.09(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.\mathrm{CHMe} e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.7$, CHMe $\left.{ }^{\mathrm{A}} \mathrm{Me}^{B}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 139.8(\mathrm{C}), 133.6(\mathrm{CH}), 129.3(2 \times$ $\mathrm{CH}), 127.7(2 \times \mathrm{CH}), 78.8(\mathrm{CH}), 68.9(\mathrm{CH}), 61.7\left(\mathrm{CH}_{2}\right), 40.1$, 29.9, 25.4, 21.0, 19.7, $16.9\left(2 \times \mathrm{CH}, \mathrm{CH}_{2}\right.$ and $\left.3 \times \mathrm{CH}_{3}\right) ; m / z$ (EI) $282\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 1 \%\right), 267$ (2), 257 (4), 239 (11), 227 (100), 143 (55); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 301.1467. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H, 301.1468$.

($2 S, 4 R, 5 S$)-4,5-Isopropylidenedioxy-2,6-dimethylheptyl phenyl sulfone 7 a

To a solution of the above product 21a ($540 \mathrm{mg}, 1.8 \mathrm{mmol}$) in dry acetone (5 mL) were added DMP (2,2-dimethoxypropane) $(2 \mathrm{~mL})$ and a catalytic amount of PTSA and the mixture was stirred at room temperature for 12 h . The reaction mixture was diluted with ether $(80 \mathrm{~mL})$ and washed successively with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to afford 7 a (580 mg , $95 \%),[a]_{\mathrm{D}}^{25}+42.2\left(c 0.67 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.91(2 \mathrm{H}, \mathrm{d}$, $J 7.2, \mathrm{ArH}), 7.62(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.55(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH})$, $4.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOHCH}\right), 3.62(1 \mathrm{H}, \mathrm{dd}, J 5.2$ and 9.3 , $\mathrm{CHCHOHCH}), 3.25\left(1 \mathrm{H}, \mathrm{dd}, J 4.5\right.$ and $\left.14.3, \mathrm{CHCH}^{4} \mathrm{CH}^{\mathrm{B}} \mathrm{S}\right)$, $3.00\left(1 \mathrm{H}, \mathrm{dd}, J 7.9\right.$ and $\left.14.1, \mathrm{CHCH}^{\mathrm{A}} \mathrm{C} H^{B} \mathrm{~S}\right), 2.35(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH} \mathrm{Me}_{2}\right), 1.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}-\right.$ CHOH), $1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}^{\mathrm{A}} M e^{B}\right), 1.19$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.84$ (3H, d, J 6.6, $\mathrm{CHMe}^{\mathrm{A}} \mathrm{Me}^{B}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 140.2$ (C), 133.4 $(\mathrm{CH}), 129.1(2 \times \mathrm{CH}), 127.8(2 \times \mathrm{CH}), 107.5(\mathrm{C}), 83.7(\mathrm{CH})$, $74.9(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right), 35.7,28.3,27.3,26.3,25.9,20.7,20.1$, $19.1\left(2 \times \mathrm{CH}, \mathrm{CH}_{2}\right.$ and $\left.5 \times \mathrm{CH}_{3}\right) ; \mathrm{m} / z(\mathrm{EI}) 325\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 32%), 283 (35), 239 (51), 123 (100); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 341.1782. $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H, 341.1785$.

(2S,4R,5R)-4,5-Isopropylidenedioxy-2,6-dimethylheptyl phenyl sulfone 7b

Following the same procedure as for 7a, compound 21b ($520 \mathrm{mg}, 1.73 \mathrm{mmol}$) afforded $7 \mathrm{~b}(509 \mathrm{mg}, 87 \%),[\alpha]_{\mathrm{D}}^{25}+16.5$ (c 0.70 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.91(2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}), 7.63$ $(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.55(2 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{ArH}), 3.73(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHOHCH}\right), 3.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOHCH}\right.$ and $\mathrm{CHCH} H^{4}-$ $\left.\mathrm{CH}^{\mathrm{B}} \mathrm{S}\right), 3.00\left(1 \mathrm{H}\right.$, dd, $J 7.4$ and $\left.14.3, \mathrm{CHCH}^{\mathrm{A}} \mathrm{CH}^{B} \mathrm{~S}\right), 2.31(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHOH}\right), 1.53(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}^{\mathrm{A}} \mathrm{Me}^{\mathrm{B}}\right), 1.16$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 140.1(\mathrm{C}), 133.4$ $(\mathrm{CH}), 129.2(2 \times \mathrm{CH}), 127.8(2 \times \mathrm{CH}), 107.9(\mathrm{C}), 86.0(\mathrm{CH})$, $76.4(\mathrm{CH}), 61.8\left(\mathrm{CH}_{2}\right), 40.3,30.5,27.3,27.0,27.0,20.3,19.2$, $18.2\left(2 \times \mathrm{CH}, \mathrm{CH}_{2}\right.$ and $\left.5 \times \mathrm{CH}_{3}\right) ; m / z$ (EI) $325\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 45%), 283 (9), 239 (48), 149 (34), 123 (100); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 341.1782. $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~S}$ requires $M+H$, 341.1785.

($3 R, 4 R, 6 R, 10 S, 12 R, 13 S$)-3,4-Bis(tert-butyldimethylsilyloxy)-12,13-isopropylidenedioxy-2,6,10,14-tetramethylpentadecan-8one $24 a$

To a solution of sulfone $7 \mathbf{7 a}(283 \mathrm{mg}, 0.83 \mathrm{mmol})$ in THF (4 mL) at $-78^{\circ} \mathrm{C}$ under Ar was added dropwise $1.60 \mathrm{M} n$-butyllithium
$(0.55 \mathrm{~mL}, 0.88 \mathrm{mmol})$ and the solution was stirred at the same temperature for 30 min . To the solution at $-78^{\circ} \mathrm{C}$ was added dropwise the aldehyde $6(380 \mathrm{mg}, 0.92 \mathrm{mmol})$ dissolved in THF $(3 \mathrm{~mL})$ and the mixture was stirred at the same temperature for 2.5 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \mathrm{~mL})$ and the temperature was allowed to warm to ambient The reaction mixture was poured into water (10 mL) and extracted with ether $(3 \times 20 \mathrm{~mL})$. The ethereal layer was washed with brine (20 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give coupling product 23 a ($458 \mathrm{mg}, 73 \%$), which was directly used in the next reaction.

To a magnetically stirred solution of PDC (945 mg , $3.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of $\mathbf{2 3 a}$ $(458 \mathrm{mg}, 0.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 15 min , the solution was passed through a short column of $\mathrm{Al}_{2} \mathrm{O}_{3}$, and the solvent was evaporated in vacuo. The residue was purified by column chromatography to furnish the α-sulfonyl ketone (421 mg , 0.56 mmol), which was directly used in the next reaction.

To a stirred solution of above product ($421 \mathrm{mg}, 0.56 \mathrm{mmol}$) and anhydrous $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ ($319 \mathrm{mg}, 2.24 \mathrm{mmol}$) in MeOH $(10 \mathrm{~mL})$ was added pulverized 6% sodium amalgam $(1.0 \mathrm{~g})$ at room temperature. The reaction mixture was vigorously stirred for 1 h until TLC showed complete conversion. The mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with ether ($3 \times 20 \mathrm{~mL}$), the combined extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give 24a ($255 \mathrm{mg}, 50 \%$ in overall yield in three steps), $[a]_{\mathrm{D}}^{25}+27.0$ (c 3.3 in CHCl_{3}); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOTB}-\right.$ DMS), $3.76(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{CHOC}), 3.63(1 \mathrm{H}$, dd, $J 5.0$ and 9.1 , CHCHOTBDMS), 3.32 ($1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHOC}$), 2.52-0.85 (12 H , $\mathrm{m}, 4 \times \mathrm{CH}$ and $4 \times \mathrm{CH}_{2}$), $1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CM} e^{4} \mathrm{Me}^{\mathrm{B}}\right), 1.31(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}^{\mathrm{A}} \mathrm{Me}^{B}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHCH}_{3}\right), 0.97(3 \mathrm{H}, \mathrm{d}, J 5.9$, $\left.\mathrm{CHCH}_{3}\right), 0.93-0.84\left(30 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CMe}_{3}\right.$ and $\left.2 \times \mathrm{CH} \mathrm{Me}_{2}\right), 0.09$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 210.2(\mathrm{C}), 107.5(\mathrm{C}), 83.8(\mathrm{CH})$, $82.9(\mathrm{CH}), 75.7(\mathrm{CH}), 72.9(\mathrm{CH}), 52.3\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 40.0$ $\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 31.9,28.5,27.4,26.3,26.1\left(6 \times \mathrm{CH}_{3}\right), 25.9$, 25.6, 21.1, 20.3, 20.2, 19.4, 19.3, 19.2 ($4 \times \mathrm{CH}$ and $8 \times \mathrm{CH}_{3}$), $18.5(\mathrm{C}), 18.2(\mathrm{C}),-3.4\left(\mathrm{CH}_{3}\right),-3.5\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-4.9$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) Found: M^{+}, 614.4762. $\mathrm{C}_{34} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2}$ requires $M, 614.4754$.

(3R,4R,6R,10S,12R,13R)-3,4-Bis(tert-butyldimethylsilyloxy)-12,13-isopropylidenedioxy-2,6,10,14-tetramethylpentadecan-8one 24b

Following the same procedure as for 24a, compound 7b ($390 \mathrm{mg}, 0.52 \mathrm{mmol}$) gave $\mathbf{2 4 b}$ ($320 \mathrm{mg}, 50 \%$ overall yield in three steps), $[a]_{\mathrm{D}}^{25}+12.1\left(c 3.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$) $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.78$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOTBDMS}\right.$ and CHOC$), 3.38(1 \mathrm{H}, \mathrm{t}, J 6.7$, CHCHOTBDMS), 3.33 ($1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHOC}$), 2.53-0.87 (12 H , $\mathrm{m}, 4 \times \mathrm{CH}$ and $\left.4 \times \mathrm{CH}_{2}\right), 1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 0.97(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{CHCH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right), 0.93-0.84(30 \mathrm{H}, \mathrm{m}, 2 \times$ CMe_{3} and $\left.2 \times \mathrm{CHMe}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ $210.0(\mathrm{C}), 107.9(\mathrm{C}), 86.3(\mathrm{CH}), 82.9(\mathrm{CH}), 77.1(\mathrm{CH}), 72.9$ (CH), $52.3\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 31.9$, $30.7,27.4,27.2,27.1,27.0\left(6 \times \mathrm{CH}_{3}\right), 25.9,25.6,20.6,20.3,19.4$, 19.3, $18.5(\mathrm{C}), 18.4(\mathrm{C}), 18.2\left(4 \times \mathrm{CH}\right.$ and $\left.8 \times \mathrm{CH}_{3}\right),-3.3$ $\left(\mathrm{CH}_{3}\right),-3.4\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$; HRMS (FAB) Found: $\mathrm{M}^{+}, 614.4762 . \mathrm{C}_{34} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2}$ requires $M, 614.4754$.

(1R)-1-\{(2R,4R,6S,8R,10S)-8-[(1R)-1-Hydroxy-2-methyl-propyl)]-4,10-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl\}-2-methylpropan-1-ol 4a

The substrate 24a ($255 \mathrm{mg}, 0.42 \mathrm{mmol}$) was dissolved in acetonitrile containing 40% aq. HF (1 mL). TLC monitoring
was carried out by spotting liquid directly onto a silica gel plate. When deprotection was complete, ether and water were added. The aqueous phase was extracted with ether $(3 \times 20 \mathrm{~mL})$, and the combined extracts were washed successively with NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography to give $\mathbf{4 a}$ ($92 \mathrm{mg}, 67 \%$), $[a]_{\mathrm{D}}^{25}-39.8$ (c 2.15 in CHCl_{3}); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 3.82\left(1 \mathrm{H}\right.$, ddd, J 3.3, 4.2 and $\left.12.0, \mathrm{CH}_{2} \mathrm{CHOC}\right), 3.69$ (1 H , ddd, J 2.4, 4.2 and 11.6, $\mathrm{CH}_{2} \mathrm{CHOC}$), $3.28(2 \mathrm{H}, \mathrm{m}, 2 \times$ $\mathrm{CHCHOH}), 2.15-0.85\left(12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}\right.$ and $\left.4 \times \mathrm{CH}_{2}\right), 1.17$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CHCH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHCH}_{3}\right), 0.97(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.7, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right), 0.88(3 \mathrm{H}$, d, $\left.J 6.8, \mathrm{CH} M e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} 98.5(\mathrm{C}), 78.9(\mathrm{CH}), 78.7(\mathrm{CH}), 70.6(\mathrm{CH}), 65.4(\mathrm{CH})$, $44.4\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.1,29.0,24.6$, $24.5,22.2,20.8,19.0,19.0,18.6,18.4\left(4 \times \mathrm{CH}\right.$ and $\left.6 \times \mathrm{CH}_{3}\right)$; m / z (EI) 328 (${ }^{+}, 1 \%$), 285 (1), 255 (65), 149 (34), 43 (100); HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}, 329.2682 . \mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{4}$ requires $M+H, 329.2686$.

(1R)-1-\{(2R,4R,6S,8R,10S)-8-[(1S)-1-Hydroxy-2-methyl-propyl)]-4,10-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl\}-2-methylpropan-1-ol 4b

Following the same procedure as for $\mathbf{4 a}$, compound 24b ($230 \mathrm{mg}, 0.37 \mathrm{mmol}$) gave 4b ($82 \mathrm{mg}, 67 \%$), [a] $]_{\mathrm{D}}^{25}-28.5$ (c 2.0 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.83(1 \mathrm{H}$, ddd, $J 3.3,5.1$ and 11.6 , $\left.\mathrm{CH}_{2} \mathrm{CHOC}\right), 3.74\left(1 \mathrm{H}, \mathrm{dt}, J 2.9\right.$ and $\left.11.6, \mathrm{CH}_{2} \mathrm{CHOC}\right)$, $3.28(1 \mathrm{H}$, dd, $J 3.6$ and $8.2, \mathrm{CHCHOH}), 3.74(1 \mathrm{H}, \mathrm{t}, J 4.9$, $\mathrm{CHCHOH}), 2.15-0.85\left(12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}\right.$ and $\left.4 \times \mathrm{CH}_{2}\right), 1.19$ ($3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHCH}_{3}$), 1.02 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}{ }^{4} \mathrm{Me}^{\mathrm{B}}$), 0.97 $\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHCH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe} e^{4} \mathrm{Me}^{\mathrm{B}}\right), 0.89$ ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}^{\mathrm{A}} M e^{B}$), $0.86\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}^{\mathrm{A}} M e^{B}\right.$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 98.2(\mathrm{C}), 78.8(\mathrm{CH}), 78.7(\mathrm{CH}), 70.7(\mathrm{CH}), 65.4$ $(\mathrm{CH}), 44.4\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 29.8$, 29.2, 24.8, 24.7, 22.2, 20.8, 20.1, 19.0, 18.9, $16.8(4 \times \mathrm{CH}$ and $6 \times \mathrm{CH}_{3}$); $m / z(\mathrm{EI}) 328\left(\mathrm{M}^{+}, 1 \%\right), 285(3), 255(66), 43(100)$; HRMS (ESI) Found: $(\mathrm{M}+\mathrm{H})^{+}$, 329.2682. $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{4}$ requires $M+H, 329.2686$.

Acknowledgements

This work was supported by NSFC (No. 29972019, 29925205 and QT program), FUKTME of China, the Young Teachers' Fund of the Ministry of Education and the Fund of the Ministry of Education (No. 99209).

References

1 Faulkner and co-workers reported in a preliminary paper that \mathbf{A} and B showed intense HIV activity, but in a later report they stated that these could be artifacts formed from \mathbf{C} as a result of prolonged storage in methanol or by autoxidation, see: (a) B. C. M. Potts and D. J. Faulkner, J. Am. Chem. Soc., 1991, 113, 6321; (b) J. D. Pika and D. J. Faulkner, Nat. Prod. Lett., 1995, 7, 291; (c) see also X. D. Fan, G. R. Flentke and D. H. Rich, J. Am. Chem. Soc., 1998, 120, 8893.
2 M. T. Fletcher and W. Kitching, Chem. Rev., 1995, 95, 789
3 L. A. Paquette and R. F. Doehner, J. Org. Chem., 1980, 45, 5107.

4 E. Klein and G. Ohloff, Tetrahedron, 1963, 19, 1091.
5 P. S. Wharton and D. H. Bohlen, J. Org. Chem., 1961, 26, 3615.
6 T. Suga and K. Imamura, Bull. Chem. Soc. Jpn., 1972, 45, 2060.
7 J. H. Rigby, N. C. Warshakoon and A. J. Payen, J. Am. Chem. Soc., 1999, 121, 8239.
8 T. Nakata, T. Tanaka and T. Oishi, Tetrahedron Lett., 1983, 24, 2653.

9 Y. Morimoto, A. Mikami, S. Kuwabe and H. Shirahama, Tetrahedron: Asymmetry, 1996, 7, 3371.
10 B. M. Trost, H. C. Arndt, P. E. Strege and T. R. Verhoeren, Tetrahedron Lett., 1976, 17, 3477.
11 E. W. Collington, H. Finch and I. J. Smith, Tetrahedron Lett., 1985, 26, 681.

